Flûte de pan : les calculs pour les matheux
Cet article n’est pas une erreur. Il fait suite à celui-ci, de la section “enfants” : Atelier flûte de pan.
Considération longueur/largeur
La fréquence du son émis par un tube est principalement liée à sa longueur. Néanmoins, la largeur n’est pas sans effet : un tube trop large ajoutera pas mal de bruit de souffle, un tube trop étroit risque de produire beaucoup d’harmoniques).
Fréquence et longueur d’onde
La formule mathématique est simple :
- [Longueur d’onde en m] = [Vitesse du son = 340 m/s] / [Fréquence en Hz = /s] (1)
Fréquence des notes
Quant aux fréquences… là c’est à peine plus compliqué :
- la fréquence double toute les octaves (2) ;
- il y a 12 tons et demi-tons (7 blanches, 5 noires sur le clavier de piano) : Do, Do#, Ré, Ré#, Mi, Fa, Fa#, Sol, Sol#, La, La#, Si, et rebelote (3) ;
- la note de référence est le “La3” à 440 Hz (4) ;
En combinant les équations (2) et (3), on devine (et ouais) qu’il y a un ratio entre chaque note de :
- Racine 12ème de 2, soit : 1,059463.
En introduisant le postulat (4), on peut calculer les fréquences des différentes notes. Par exemple autour du La3 :
- Do3 = 261,626 Hz
- Ré3 = 293,665 Hz
- Mi3 = 329,628 Hz
- Fa3 = 349,228 Hz
- Sol3 = 391,995 Hz
- La3 = 440,000 Hz
- Si3 = 493,883 Hz
Colonne vibrante dans un tube
Puis il faut savoir que dans un tube le ratio longueur / fréquence est de 4 (en effet, il y a un “ventre” à l’extrémité ouverte, là où l’on souffle et un “nœud” à l’extrémité fermée, donc le quart d’une onde sinusoïdale) :
- [Longueur du tube en m] = [Vitesse du son = 340 m/s] / [4 x Fréquence en Hz = /s] (5)
Et donc les longueurs (entre le bord où l’on souffle et le nœud du bambou, pas là où l’on a coupé !) :
- Do3 = 32,5 cm
- Ré3 = 28,9 cm
- Mi3 = 25,8 cm
- Fa3 = 24,3 cm
- Sol3 = 21,7 cm
- La3 = 19,3 cm
- Si3 = 17,2 cm
Et si c’est trop long, on peut tout diviser par deux pour changer d’octave !